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Abstract—Recently, a hybrid cache consisting of SRAM and STT-RAM has attracted much attention as a future memory by

complementing each other with different memory characteristics. Prior works focused on developing data allocation and migration

techniques considering write-intensity to reduce write energy at STT-RAM. However, these works often neglect the impact of

operation-specific reusability of a cache line. In this paper, we propose an energy-efficient per-operation reusability-based allocation

and migration policy (ORAM) with a unified LRU replacement policy. First, to select an adequate memory type for allocation, we

propose a cost function based on per-operation reusability – gain from an allocated cache line and loss from an evicted cache line for

different memory types – which exploits the temporal locality. Besides, we present a migration policy, victim and target cache line

selection scheme, to resolve memory type inconsistency between replacement policy and the allocation policy, with further energy

reduction. Experiment results show an average energy reduction in the LLC and the main memory by 12.3 and 21.2 percent, and the

improvement of latency and execution time by 21.2 and 8.8 percent, respectively, compared with a baseline hybrid cache

management. In addition, the Energy-Delay Product (EDP) is improved by 36.9 percent over the baseline.

Index Terms—Hybrid cache, energy efficient allocation and migration policy, unified LRU replacement policy, per-operation reusability

Ç

1 INTRODUCTION

AS the number of cores increases in processors, the
size of shared last-level caches (LLCs) is increased to

capture the working set of data-sharing applications.
However, the large size of LLCs increases energy con-
sumption. Various cache management schemes have
been proposed to reduce their energy consumption while
improving the utilization. Despite these efforts, SRAM-
based LLCs suffer from substantial leakage power as
memory capacity rapidly is increased. To solve this prob-
lem, a STT-RAM (Spin Transfer Torque RAM) based
LLCs are proposed.

The recent emerging technology, STT-RAM, stores data
by using a Magnetic Tunnel Junction (MTJ) consisting of a
reference layer and a free layer with one transistor. A bit is
stored by changing the magnetic orientation of the free
layer. It does not consume any additional energy for preser-
vation. Due to this structure of STT-RAM, the technology is
approximately 4 times higher in density and 10 times lower
in leakage power, compared with SRAM. However, higher
write latency and write energy consumption should be
properly addressed to efficiently use STT-RAM for cache
memory [3], [30]. In order to use STT-RAM as a cache mem-
ory, many researches have explored methods to alleviate

the write penalty. However, these efforts still suffer from
write penalty by allocating unavoidable data as in the fill
operations of reusable data. For this, a SRAM-STT-RAM
hybrid caches have been proposed to minimize the penalty
due to the write operations on the STT-RAM. The hybrid
structure has shown effectiveness in reducing energy con-
sumption by allocating data with write-oriented accesses to
SRAM in order to reduce write penalties.

To efficiently utilize the hybrid cache memory and opti-
mize the energy consumption, a cache line should be care-
fully allocated either on SRAM or STT-RAM. Most prior
research has focused on allocation policies-based on the
access pattern analysis [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18]. In these schemes, the memory type is
determined based on the current request operation (read or
write) and the expected write count to the cache line after
allocation. These techniques may be effective in reducing
LLC energy consumption caused by writes to the STT-
RAM. However, they do not fully take into account the ben-
efits and losses caused by allocating a cache line on a partic-
ular type of cache memory. That is, a total cost of access is
dependent on the future access to the evicted cache line by
being data allocated, as well as the operation type and the
reusability of a cache line in the selected memory. We call
this per-operation reusability in this paper. To the best of our
knowledge, there has been no hybrid cache management
scheme which considers per-operation reusability for
energy efficiency under the unified LRU replacement pol-
icy. In addition, the fundamental limitation of an allocation-
only policy is that it only performs static allocation of a
cache line.

To dynamically reallocate the data between SRAM and
STT-RAM cache memory, data migration techniques are also
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studied [7], [8], [9], [19], [20]. For these techniques, two impor-
tant factors of interest are when and what to migrate. In gen-
eral, whenwrite intensive data is allocated in the STT-RAM, it
is migrated to SRAM to reduce energy consumption from fre-
quent writes to the STT-RAM cache line. However, since data
migration consumes additional energy in the process of
rewriting data, frequentmigration can adversely affect energy
con-sumption. Priorworks considered the benefit frommigra-
tion without thoroughly analyzing the side-effect of unneces-
sary migration. When selecting a target cache line to be
migrated, they focus on identifying write intensive data to
migrate it from the STT- RAM to the SRAM. However, there
are limitations in predicting write intensity in the non-
inclusive writeback cache as write request behavior is often
dynamically changed by the state of upper-level caches. To
improve the prediction accuracy, more sophisticated metrics
should be considered other thanwrite intensity.

Finally, prior research using both allocation and migra-
tion policies in the hybrid cache structures do not adopt a
unified replacement policy across SRAM and STT-RAM par-
titions, which may provide optimization of replacement
decisions in global-scope using reuse-distancewhereas exist-
ing schemes perform memory-specific replacement policies
in local-scope. However, when applying an allocation policy
to a hybrid cache using a unified LRU replacement policy,
the memory type selected by an allocation policy may differ
from the memory type of victim cache line, which forced
prior works to usememory specific replacement policies.

In this paper, we propose novel allocation and migration
policies to improve energy efficiency in a hybrid SRAM-
STT-RAM caches using a unified replacement policy. Main
contributions are as follows:

� First, we propose a per-operation reusability-based
cost function for the cache line allocation policy to
estimate expected future energy consumption, which
considers both hits from the allocated cache lines
and misses from the evicted cache lines.

� Second, we identify and address key challenges in
cache management in the hybrid cache under a uni-
fied LRU replacement policy for SRAM and STT-
RAM partitions.

� Finally, we propose an energy-efficient migration
policy which consists of a victim and target cache
line selection scheme. The victim cache line

selection scheme chooses a line to minimize migra-
tions while avoiding eviction of useful data. Target
cache line selection scheme chooses a cache line to
migrate by considering per-operation reusability after
migrations.

The rest of the paper is organized as follows. Section 2
discusses motivation for our techniques. Section 3 presents
the proposed allocation and migration policy in detail.
Then, we analyze experiment results in Section 4. Section 5
reviews prior hybrid SRAM-STT-RAM cache management
techniques. Finally, we draw conclusions in Section 6.

2 MOTIVATION

To manage the hybrid last-level cache efficiently, prior works
focused on accurately estimatingwrite intensity aswrite oper-
ations on the STT-RAM significantly impact the energy con-
sumption of the overall system. Therefore, prior studies have
researched allocation policies for selecting memory by pre-
dicting expected write accesses in workloads. However, they
only took into account the energy differences of eachmemory,
without considering per-operation reusability.

Fig. 1 depicts a motivational example to show the benefit
of the proposed technique. In the figure, a row represents
data in the cache blocks of a single cache set at a given time.
Each row indicates data allocation as the result of a request
(data and operation type specified on the left with timeline)
for the same cache line. We assume that cache blocks in a
set are sorted in the beginning as the leftmost cell represents
an LRU position. In addition, cache allocates 1-way to
SRAM and 4-way to STT-RAM for simplicity. A square box
indicates a cache line whose data is shown in an uppercase
alphabet and a hatched box represents a hit upon an access.

As the policy in Fig. 1a ignores both reusability and write
intensity, the cache line A is evicted and then reallocated at
t1; t3. The cache line G is allocated in the STT-RAM and con-
sumes unnecessary write energy at t2; t6. Allocation based on
the write intensity, whichmaps data with high write intensity
to SRAM, in Fig. 1b allocates the write intensive cache line G
on SRAM at t2 and benefits from a hit for a subsequent write
of G. However, the cache line A is evicted and reallocated at
t1; t3 (incurring an external memory access) because it does
not consider reusability of the cache line A. An allocation
based on reusability in Fig. 1c assumes that the reusability of a
cache line can be ideally determined in advance. It further

Fig. 1. Motivation example. (a) The data allocation based on a unified LRU replacement policy without additional management schemes. (b) The allo-
cation method solely based on the write intensity. (c) The allocation method that preserves data with high reusability. (d) The allocation method which
considers both reusability and operation type.
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reduces main memory accesses by preserving the cache lines
A and G, which are expected to be re-used at t3; t6, respec-
tively. While the hit count is increased, however, writes to the
STT-RAM are increased as the write intensive cache line G is
allocated to STT-RAM at t2 without considering its future
operation type. From these examples, it is clear that both the
reusability and the operation types need to be considered to
efficiently utilize the hybrid cache. The proposed method in
Fig. 1d reduces not only main memory accesses but also
writes to the STT-RAM by forecasting following operations.
Cache line A is preserved in SRAM until a write intensive
request for the cache line G is issued. Because of its high write
intensity, the cache line G is allocated in SRAM, which trig-
gers migration of the cache line A to the victim cache line
occupied by data C in STT-RAM at t2. By considering the
reusability and operation type of cache line A and G, the pro-
posedmethod (d) minimizeswrites to STT-RAMand external
memory accesses.

3 HYBRID CACHE MANAGEMENT SCHEME

3.1 Overview

A baseline hybrid SRAM-STT-RAM cache partitions cache
way conforming to the density ratio of SRAM and STT-
RAM (e.g., 1:4). Fig. 2 presents the overview of the proposed
hybrid cache architecture and management scheme which
consists of (1) an allocation policy, (2) a victim cache line
selection scheme, and (3) a target cache line selection
scheme for data block migration. The cache hierarchy con-
sists of private L1, L2 caches and a shared L3 cache with a
unified LRU replacement policy.

In our hybrid LLC, the proposed allocation policy deter-
mines the memory type (e.g., SRAM or STT-RAM) by esti-
mating current and future energy consumption upon
allocating data on each memory type. If the allocation policy
and the victim cache line under the replacement policy
point to the same memory type (A and 1a in Fig. 2), the vic-
tim line chosen by the replacement policy is replaced. If the
memory types pointed by the two are different (A and 1b in
Fig. 2), data should be allocated to a target memory chosen
by the allocation policy. After a target cache line in one
memory is selected by the allocation policy, its data is
migrated to a victim cache line in another memory. This
process incurs additional energy and latency for migration.
To avoid unnecessary frequent migration, we propose a vic-
tim cache line selection scheme to search an alternative

cache line in the target memory which is not to be likely
reused (2). Despite this effort, there may be situations where
migration should be performed. In this case, we need to
determine a target cache line where we allocate incoming
data. For this, we propose a target cache line selection
scheme that determines a cache line by considering both the
expected operation after migration and the memory charac-
teristics (3). Then, its data is migrated to the victim cache
line (B) which was selected by replacement policy (A) so
that a target cache line can be used for new incoming data.

In the allocation policy, we maintain a history queue and
history table, which will be discussed in the following sec-
tion, per core to record access patterns per each workload,
and a memory selection manager to handle cache line allo-
cation. In victim and target cache line selection, a global
queue and global table for hit position or operation match-
ing are maintained as we use the unified LRU replacement
policy across applications.

3.2 Allocation Policy

The allocation policy determines the type of memory to allo-
cate a cache line on a cache miss. The proposed allocation
policy takes into account the energy consumption from the
operation of a current request and expected operations in the
future as a result of allocating a cache line. It collects cache
access statistics for energy computation and decides to allo-
cate on SRAMor STT-RAM, or bypass tomainmemory.

First, to collect and organize statistics of cache accesses,
we maintain a history queue and a history table per core.

� History Queue: A history queue collects cache access
patterns for each core. The history queue is a first-in-
first-out (FIFO), consisting of 4-bit entries where each
bits represents bypass (B), memory type (S/ST), hit/
miss (H/M) and operation type (R/W) respectively.

� History Table: A history table maintains cache access
statistics to provide a basis for selecting the memory
to allocate. The history table stores the number of
occurrences for each pre-defined event by counting
them from the history queue. The events indicate all
possible cases that could occur.

History queues and history tables are managed together in
amovingwindow to reflect only recent access patterns. When
a request arrives, a new entry is enqueued into the history
queue and a count of its corresponding event for the request is
incremented in the history table. Since the history queue is a
FIFO, the oldest entry is dequeued and its corresponding
event count decremented in the history table. Fig. 3 illustrates
a processing example of history queue and table where a
writeback to LLC is allocated to STT-RAM. In this case,
B, S/ST, H/M and R/W bits would be set to 0 (no bypass), 1
(STT-RAM), 1 (miss), and 1 (write) in the history queue with
the counter for STT-RAM/Miss/Write entry incremented in
the history table. At the same time, the oldest event denoted
as 1000 in the history queue is evicted with the counter for
Bypass/Read entry decremented in the history table.

After collecting the statistics, the allocation policy calcu-
lates expected energy consumption using information from
the history table for different allocation choices and selects
the best memory type or decides to bypass. The detailed
implementation of the policy is shown in Algorithm 1.

Fig. 2. Overall proposed scheme including architecture and manage-
ment techniques.
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Algorithm 1. The Algorithm of Allocation Policy

Input: Reqcurr
Input: RateMOH;EMOH

where M ¼ fT;S:ST;MEM;�g;O ¼ fR;W;�g;H ¼ fH;M;�g
Parameter: ESRAM;ESTT�RAM;EBypass; weighta;weightb
Output: Allocation State
1. Pre-setting the input Ex
2. EXRH ¼ ETR þ EXR,
3. EXRM ¼ ETR þ ETW þ EXW þ EXR þ EMEM,
4. EXWH ¼ ETR þ EXW;
5. EXWM ¼ ETR þ ETW þ EXW, where x is memory type
6. Calculate the expected energy consumption at eachmemory
7. EAllocation State ¼ EC þ weighta � EH þ weightb � EM,
8. EC: energy consumed by the current request
9. EH: expected energy consumed by subsequent hit on the

allocated cache line
10. EM: expected energy consumed from subsequent miss due

to the evicted cache line.
11. Decide memory type
12. if ESTT�RAM > ESRAM then
13. if ESRAM > EBypass then Allocation State is Bypass to

Main Memory
14. else then Allocation State is SRAM
15. else then
16. if ESRAM > EBypass then Allocation State is Bypass to

Main Memory
17. else then Allocation State is STT-RAM
18. end if

Inputs to the algorithms are Reqcurr;RateMOH; andEMOH

where subscript MOH represents memory type (M), opera-
tion (O) and hit/miss (H). M may be Tag directory/SRAM/
STT-RAM/Main Memory/none (T/S/ST/MEM/-), and O
and H may be read/write/none (R/W/-) and hit/miss/
none (H/M/-), respectively. The subscript of Rate and E are
constructed by combining each component for M, O and H.
Reqcurr;RateMOH, and EMOH denote a current request, a rate
or the amount of energy consumption for the state of MOH,
respectively.

RateMOH is obtained from counter values stored in the
history table and are computed as the sum of counter num-
bers in the entries of the table which constitute the cases

corresponding toMOH. EMOH indicates the amount of energy
consumed for the cases corresponding to MOH where it rep-
resents a read orwrite operation in cache andmemory. Again,
EMOH is calculated as the sum of energy consumed by opera-
tions occurring in each case, which is described in lines 1-5.
For example, ESRM (SRM stands for a read miss on SRAM) is
derived by summing the energy for searching and updating a
tag memory, accessing main memory, updating the data
memory of cache. Energy consumption for each operation in
cache is pre-determined using Cacti /NVSim andmainmem-
ory access energy is determined using the configuration in
Table 1. Tominimize the overhead of calculating the cost func-
tion, the energy values are rounded to 2 decimal places after
normalized by the largest energy value and then treated as
integers. All input values are provided to the memory selec-
tionmanager in the beginning.

Next, it calculates expected energy consumption for the
current request in each memory. It reflects all future energy
consumption from subsequent hits andmisses due to the cur-
rent request and is expressed in line 6. EAllocation State denotes
the expected total energy consumption for three cases:
SRAM, STT-RAM and Bypass to Main Memory. The first
ðEcÞ is the energy consumed by allocating the data of the cur-
rent request. The second ðEHÞ is the expected energy con-
sumed due to subsequent hits on the allocated cache line in
the future. The last item ðEMÞ represents the energy con-
sumption from subsequent misses due to the evicted cache
line from the current request.Weights represent the influence
of each item overEAllocation State as shown in lines 7-9.

ESRAM ¼ ESRM ESWM½ �
þ weightaxðRateRHxESRH þ RateWHxESWHÞ
þ weightbxðRateSRHxESRM þ RateSWHxESWMÞ

(1)

ESTT�RAM ¼ ESTRM ESTWM½ �
þ weightaxðRateRHxESTRH þRateWHxESTWHÞ
þ weightbxðRateSTRHxESTRM þ RateSTWHxESTWMÞ

(2)
EBypass ¼ ETR þ EMEM

þ weightaxðRateRHxESRM ESTRM½ � þRateWHxESWM ESTWM½ �Þ
þ weightbxðRateSRHxESRH ½RateSTRHxESTRH �
þRateSWHxESWH ½RateSTWHxESTWH �Þ

(3)

Based on this, the cost function for three states (SRAM,
STT-RAM, or Bypass to Main Memory) are calculated as
shown in Eq. (1), (2), (3). In the equations for allocating to
SRAM and STT-RAM (Eqs. (1), (2)), the first item, EMOH, is
set according to the current request operation (O) for mem-
ory (M). This item can be for a read or a write (in a square
bracket) according to the operation of a current request. The
following two items are the expected energy consumption
from read or write hits on the cache line assuming it is allo-
cated. They are calculated by multiplying the probability of
read/write hit, RateRH=RateWH, with corresponding EMH.
The last two indicate the expected energy consumption from
misses due to cache line eviction. Note that there is a differ-
ence between RateOH and RateMOH factors for expected
energy consumption for hits and misses. For the hit case,
once a cache line is allocated on either SRAM or STT-RAM, it

Fig. 3. Allocation policy with History Queue and History Table.
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will stay in the cache until the unified LRU algorithm repla-
ces it. This guarantees the lifetime to be proportional to the
size of the whole set including both SRAM and STT-RAM.
Thus, the probability of a hit will be proportional to the
global hit rate, RateRH or RateWH. For subsequent misses
from cache line eviction, the probability is proportional to
the hit rate of specific memory type (e.g., RateSRH;RateSWH;

RateSTRH;RateSTWHÞ. The algorithm also computes the
expected total energy consumed in bypassing to prevent
allocating a cache line with low reusability in Eq. (3). The
energy consumption for bypassing is similar to ones for
cache memory except for all hit and miss energy penalties
being switched to miss and hit energy penalties respectively.
If a cache line is determined to be un-allocated (bypassed),
its request reads tag memory and directly accesses external
memory ðETR þ EMEMÞ. In this case, if request to the same
data is received in the future, it results in a miss. The energy
consumption due to future misses is proportional to the
probability of hits and miss penalty as the cache line is not
allocated. Meanwhile, as the useful data is not evicted due to
bypass, future accesses to the cache memory may observe
additional hits due to the un-evicted cache line. This trans-
lates into last two terms in EBypass. Like the previous equa-
tions, it can be substituted by the expression in the square
bracket depending on thememory type to allocate.

Using the calculated expected total energy, the memory
type is determined in lines 10-17. In this process, the mem-
ory with the smallest cost is compared with the energy con-
sumption for the bypass case. As a result, the memory type
or bypass is selected by comparing the expected total
energy for bypass with that of the best memory type.

To calculate the cost function, additional circuitry is
needed: 4 � 18-bit adders and 4 � 18-bit multipliers for each
allocation state. First, for each allocation state, themultiplica-
tion operations of RateX and EX are computed in parallel.
Then the results of the multiplication operations are added
in three steps. The cost functions are calculated at the same
time as the tag access. And the time of calculating cost func-
tion is hidden since the it is the same at clock cycles com-
pared to the tag access time in 1 GHz memory system.1

Similarly, the energy consumption for calculating the cost
function for the cache access is alsomarginal.

3.3 Victim Cache Line Selection

In the previous section, we describe the proposed allocation
policy, which decides on bypassing or the memory type. As
the allocation policy makes a decision without any knowl-
edge of the candidate victim cache line, there may be incon-
sistencies between the memory type selected by the
allocation policy and the memory type that a selected victim
cache line at the LRU position belongs to.

Fig. 4 illustrates the problem. In the figure, a rectangle rep-
resents a cache line, and uppercase alphabets and alphabets
in parentheses denote the memory type and data, respec-
tively. Fig. 4a shows a cache set sorted from anMRU position
to an LRU position. As we use a unified LRU algorithm for
the replacement, a line marked with ST(e) is chosen for a vic-
tim cache line. If a new cache line needs to be allocated to
SRAM, a sub-optimal solution may be selecting a cache line S
(c) in the SRAMnear the LRU position as in Fig. 4b. However,
in this case, a victim cache line is evicted before reaching the
LRU position. Alternatively, we can swap data c in the cache
line of SRAM with data e in the cache line of STT-RAM and
reset positions in the LRU stack as in Fig. 4c. Then we can
replace S(e) using a unified LRU replacement algorithm. This
process is calledmigration. However, if datamigration occurs
frequently, it would consume substantial energy.

The proposed victim cache line selection scheme aims to
prevent unnecessary data migration and selects a victim
cache line from the memory determined by the allocation
policy whereas it conforms to a unified LRU replacement as
much as possible. To measure the reuse distance of cache
lines for victim cache selection, we maintain a global Hit
Position Queue (HPQ) which records hit positions in the
LRU stack and a Hit Position Table (HPT) which counts the
number of hits per position. A victim cache line is selected
by utilizing the HPT.

Fig. 5 illustrates the victim cache line selection process.
When a cache hit occurs, it checks its hit position within

the LRU stack, enqueues the position into HPQ, and increases
the counter of the associated position in HPT. Since HPQ is a
FIFO (a moving window), the oldest entry is removed, and
its associated counter is decremented in the HPT. In Fig. 5, a
cache hit occurs at 7th position of the LRU stack and both
HPQ and HPT are updated accordingly. In addition, the old-
est hit position, number 10, is removed from HPQ and the
associated counter value in HPT is decremented.

HPT provides a distribution for reuse distance, and it
helps to choose candidate victim cache lines within LRU
stack. In other words, the distribution helps to distinguish
highly reusable cache lines from less reusable ones so that
we can choose a victim cache line from the latter.We describe
the victim cache line selection scheme in Algorithms 2 and 3.

Algorithm 2 describes a method to determine victim line
candidates. It takes HIT as an input. HIT represents an array
of hit counts in the HPT. HITx represents a particular counter
where x may be either assoc or index, where assoc represents
the maximum associativity value. HITThreshold is a constant
parameter that is determined experimentally. SUM repre-
sents the sum of hit counts from the LRU position to the cur-
rent index. The output Linevictim is the position in the sorted
LRU stack, which marks the boundary of victim line candi-
dates. From Linevictim to LRU position, cache lines can be cho-
sen as a victim cache line as they exhibit low reusability.

Fig. 4. An example of victim cache line selection to allocate a cache line
in SRAM under the unified LRU replacement policy.

1. A 16-bit multiplier consumes 424mW while its dealy is 528ps and
a 16-bit adder consumes 74mWwhile its delay is 467ps at 45nm technol-
ogy with a supply voltage(Vdd) of 1.1V [31]. The power delay product
of the additional circuitry is under 3.1 e-12J even we used 18-bit adders
and multipliers, which is marginal.
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To find Linevictim, algorithm evaluates SUM and HITindex

of each position from LRU (lines 2-5).HITindex is the hit count
of a current position pointed by index and it should not
exceed the hit count of the LRU position to be chosen as a
candidate victim cache line. In addition, SUM should be less
than the pre-defined HITThreshold. These two conditions pre-
vent the selection of highly reusable cache lines as victim.
Both conditions guarantee cache lines between Linevictim and
LRU position to be a good candidate for replacement.

Algorithm 3 describes the victim cache line selection pro-
cess. memTypealloc and memTypeLRU denote the cache

memory type selected from allocation policy and LRU posi-
tion, respectively. memTypeindex represents the cache mem-
ory type of a cache line at the position index of the LRU stack.

Algorithm 3 compares the memory type determined
from allocation policy and the memory type of the cache
line at the LRU position (line 2). If two memory types match,
the cache line at the LRU position is selected as a victim (line
13). Otherwise, we search for a victim cache line that
matches the memory specified by the allocation policy. For
this, it searches for an invalidated cache line (lines 3-6). If it
is not found, we scan the cache line from the LRU position
to Linevictim that matches the memory type determined by
the allocation policy (line 7-11). If no victim candidate is
found, we perform migration (line 12).

The victim cache line selection scheme is similar to pro-
tecting distance-based policy (PDP) [23] as victim cache line
selection considers reuse-distance. In this paper, we use
conventional LRU as a replacement policy. However, other
replacement policies can be integrated with the victim cache
line selection scheme with only minor modification.

3.4 Target Cache Line Selection for Migration

When the memory type of a victim cache line does not
match the memory type selected by the allocation policy,
we perform migration. In migration, we move the data of
the target cache line selected by the target cache line selec-
tion scheme to the victim cache line. After the move, the tar-
get cache line is replaced with a new incoming data.

The objective of target cache line selection is to minimize
the energy consumption of LLC aftermigration. Upon select-
ing a cache line to migrate from the target memory, if the vic-
tim cache line is SRAM, it is beneficial to select a cache line
which ismost likely to havemorewrite accesses. Conversely,
if the victim cache line is STT-RAM, a cache line with the
lowest possibility of write accesses should be selected.

To predict which operation will be occur at a specific
cache line in the future, we implement a read/write match
queue and operation hit table (OHT). They record the fre-
quency of two subsequent operations (e.g., read or write)
when a cache hit occurs. The target cache line selection
scheme chooses a cache line to minimize energy using this
information.

Fig. 6 shows how OHT is managed. To record the last
operation for each cache line, one bit is used per each cache
line. When a cache is accessed for either read or write, it
reads the last operation bit and records it in its correspond-
ing read/write match queue. At the same time, OHT con-
taining operation match counters is updated. Since read/
write match queues are FIFOs, they are maintained as a
moving window. Upon accessing a cache line, the type of a
match queue is determined by the last operation to that
cache line. Then, the value inserted into a match queue is
determined by the type of the last and current operation. If
they are identical, 1 is inserted and 0 otherwise. In Fig. 6,
the first example shows a case where the last access was a
read and a write access occurs to the same line. Then the
value of ‘0’ is inserted to the read match queue, indicating
that an opposite operation (write) occurs. In addition to
updating the match queue, associated counters of OHT are
also updated. A counter named as ‘x after y’ records how
many times operation x occurs after operation y during a

Fig. 5. Hit Position Queue and Table management.

Algorithm 2. Finding a range for the victim cache line

Input:HIT
Parameter: HITThreshold, SUM
Output: Linevictim
1. Find a lower index for the victim line in LRU stack
2. for index ¼ assoc!1 do
3. if ðSUM < HITThreshold&HITindex < HITassocÞ then

SUMþ ¼ HITindex

4. else Linevictim ¼ index, and then break
5. end for

Algorithm 3. Selecting a victim cache line

Input:memTypealloc;memTypeLRU;Linevictim
Parameter:memTypeindex
Output: victim cache line
1. Select a victim cache line when a miss occurs
2. ifmemTypealloc ! ¼ memTypeLRU, then
3. for index ¼ assoc!1 do
4. if ðmemTypeindex ¼¼ memTypealloc & the cache line is

invalidated),
5. then select indexth cache line for a victim
6. end for
7. if it cannot find invalidated cache line, then
8. for index ¼ assoc!Linevictim do
9. ifmem Typeindex ¼¼ memTypealloc, then select

indexth cache line for a victim
10. end for
11. end if
12. if it cannot find a victim cache line, then do migration.
13. else then select a cache line in the LRU position for a

victim.
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window. Thus, in the first example, a counter with ‘W after
R’ is incremented. In the second example of Fig. 6, a write
access occurs to the cache line whose last access was a write.
This increases the counter with ‘W after W’. Only four
global counters are managed. Each time when a new opera-
tion is inserted into the read/write match queue, the oldest
operation is removed from the FIFO, causing its associated
counter to be decremented. Using the information of OHT,
a target cache line is selected. The process of target cache
line selection is described in Algorithm 4.

Cxy denotes a counter for x after y where x and y repre-
sent an operation (R/W). OPx represents the operation at
position x of the LRU stack, and memTypevictim represents
the memory type of the cache line selected by the proposed
victim cache line selection scheme.

When a victim cache line with a matching memory type
is not found by the victim cache line selection scheme, a

target cache line should be selected. In case of migrating to
SRAM in which a victim cache line resides (line 2), the algo-
rithm search es a cache line from the LRU position to the
MRU position until it finds one belonging to STT-RAM (line
3). And then after, STT-RAM cache line that is likely to be
written is selected as a target cache line as long as it satisfies
the condition in lines 4-5. For instance, if the last operation
of a chosen cache line was a read and CWR is greater than
CWW, it is selected as a target cache line because a cache line
with a recent history of a read is more likely to be written
again once it is moved to SRAM than one with a history of a
write. However, if a target cache line is not found through
the steps described in line 4-5, it chooses the first cache line
belonging to STT-RAM as a target cache line while search-
ing from the LRU position to the MRU position (lines 7-11).

On the other hand, when migrating to STT-RAM, we find
a cache line in SRAM that is likely to be read. Since a cache
line has either been read or written, one with higher chance
of being read in the future will be selected by comparing
CRR and CRW (lines 13-16). Note that the searching direction
of the LRU stack is opposite when finding a target cache
line. Since the cache line at the MRU position will be
replaced later than the cache line at the LRU position, it has
more opportunity of a read hit for the migrated cache line.
It also reduces write energy consumption in the STT-RAM
caused by allocating a new cache line from early eviction of
the migrated cache line. For this reason, if a target cache line
is not found, it searches a target cache line belonging to
SRAM from the MRU position to the LRU position (lines 17-
21). When the target cache line is determined, data migra-
tion is performed as follows. First, data of the victim cache
line and the target cache line are read. Then, data of the vic-
tim cache line is written back to the main memory or invali-
dated when it is clean. Simultaneously, data of the target
cache line is buffered until the victim cache line is available
for a write. Lastly, the data from the target cache line is writ-
ten to the victim cache line. New data is allocated to the tar-
get cache line after data migration is completed.

4 EXPERIMENT EVALUATION

4.1 Evaluation Environment

In this paper, we present the SRAM-STT-RAM hybrid LLC
management scheme including the allocation and migration
policy based on per-operation reusability. We use GEM5
simulator [24] for evaluation. The detailed system environ-
ment is described in Table 1.

The cache architecture consists of L1/L2/L3 caches with
writeback and non-inclusive policy. Most works allocate
1 MB per core in SRAM LLC. For a fair comparison, we use
the same configuration. And since the density of STT-RAM
is 4 times higher than the density of SRAM, we allocate
4 MB and 16 MB for the SRAM-only and STT-RAM-only
LLC configuration, respectively. In case of the hybrid LLC,
we use 2 MB SRAM and 8 MB STT-RAM to maintain the
same area cost. It is managed by the unified LRU replace-
ment policy and treated like a single cache memory. To cal-
culate an accurate timing and energy consumption, each
level of caches and its tag directory are modeled using Cacti
[27] and NVSim [28] for a 45nm process technology, as sum-
marized in Table 2.

Fig. 6. OP Hit Table management.

Algorithm 4. The algorithm of target cache line selection

Input: CRR;CRW;CWR;CWW;OPindex,memTypevictim
Output: target cache line
1. Select target cache line when miss is occurred
2. ifmemTypevictim is SRAM then
3. for index ¼ assoc ! 1 belong to the STT-RAM, do
4. if ðCWR > CWW&OPindex is READ), select indexth

target cache line
5. if ðCWR < CWW&OPindex is WRITE), select indexth

target cache line
6. end for
7. if target cache line was not found then
8. for index ¼ assoc!1, do
9. if indexth cache line is belong to the STT-RAM, then

select indexth target cache line
10. end for
11. end if
12. else then
13. for index ¼ 1!assoc belong to the SRAM, do
14. if ðCRR > CRW&OPindex is READ), select indexth target

cache line
15. if ðCRR < CRW&OPindex is WRITE), select indexth

target cache line
16. end for
17. if target cache line was not found then
18. for index ¼ 1!assoc, do
19. if indexth cache line is belong to the SRAM, then

select indexth target cache line
20. end for
21. end if
22. end if
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For evaluation, we use SPEC 2006 benchmark suites [25]
and PARSEC benchmark suites [26]. Considering different
memory characteristics for SRAM and STT-RAM, we clas-
sify workloads based on write intensity as shown in Table 3.
The write intensity is measured as write counts per kilo-
instructions (WPKI). Write operations represent all possible

write operations that occur in LLC. Applications are classi-
fied as high or low according to their write intensity. By
mixing benchmark applications, we generate L3 workloads
as listed in Table 4. Each benchmark application runs until
it executes 500M instructions, and the experiment is con-
ducted as a cold start.

We propose allocation and migration policy with consid-
eration of per-operation reusability. In our experiment, the
overall overhead of calculating cost function from a perfor-
mance nor a power perspective is considered by referencing
the paper [31].

We use a hybrid cache management scheme using a uni-
fied LRU replacement policy without any allocation policy
as a baseline. In addition, we evaluate both SRAM-only and
STT-RAM-only LLC along with recently proposed schemes:
PTHCM [15] and APM [7], which use both allocation
and migration techniques to improve hybrid LLC energy
efficiency.

4.2 Impact of Allocation Policy

In this section, we evaluate the proposed allocation policy. It
aims to allocate data efficiently to reduce LLC energy con-
sumption and improve data reusability. In Fig. 7, we show
experimental results from applying per-operation reusabil-
ity (OR) in terms of LLC dynamic power and hit counts.

Experiments are performed without a victim cache line
selection scheme as it affects allocation policy. The baseline
scheme is data allocation by the unified LRU policy. The
weighta and weightb are all set based on the experiment
results. We sweep each weight from 0 to 2 by 0.25 units. The
overall LLC energy consumption decreases as the values
increase. And the energy consumption is almost saturated
when both weighta and weightb are all 1. For this reason, we
set the weighta and weightb to 1. All results are normalized
to the baseline.

In Fig. 7a, with OR includes two last terms (hits and misses
in the future) in Eq. (1) whereas without OR excludes them.
The allocation policies without and with OR improve LLC
dynamic power by 7.1 and 21.5 percent on average compared
to the baseline, respectively. With OR, LLC dynamic power is
decreased as much as 30.7 percent compared to the result
without OR. Looking into the breakdown, OR decreases
dynamic power for the write operation performed in STT-
RAM by 8.4 percent on aver age compared to no OR case. The
allocation policy with and without OR increase LLC hit counts
by 21.9 and 16.3 percent respectively compared to the baseline.

The proposed allocation policy with OR decreases LLC dy-
namic power dramatically in most workloads. These result
from not only reduced write accesses to STT-RAM but effi-
cient bypass. Per-operation reusability based allocation policy

reduces unnecessary writes to STT-RAM by allocating
data based on not only the current request’s operation but
also future expected operations. However, in L4-1, write
power in STT-RAM for the OR is worse than the no OR
case. In L4-1, LLC accesses are less than 20 percent of other
workloads and compulsory misses to STT-RAM in the
beginning of execution dominate total writes, causing rela-
tively large dynamic power consumption.

As shown in Fig. 7b, per-operation reusability substan-
tially increases LLC hit counts compared to the baseline.

TABLE 2
Characteristics of Cache Memory

Tag SRAM STT-RAM

Read Latency (ns) 1.791 2.189 3.774
Write Latency (ns) 1.791 2.189 13.247
Read Energy (nJ) 0.014 0.076 0.084
Write Energy (nJ) 0.014 0.076 0.649
Leakage Power (mW) 9.618 30.053 9.011

TABLE 3
Benchmark Classification Based on Write Intensity

Classification Benchmarks

High WPKI
(H)

bzip2, mcf, sjeng, lbm, libquantum, gobmk,
soplex, milc, zeusmp, leslie3d

LowWPKI
(L)

hmmer, povray, h264ref, namd, calculix,
GemsFDTD, omnetpp, sphinx3, swaptions,
streamcluster, freqmine, canneal

TABLE 4
Workload Mix

Name Workloads

H4-1 bzip2, lib, gobmk, lbm
H4-2 mcf, sjeng, soplex, zeusmp
H3L1-1 bzip2, mcf, sjeng hmmer
H3L1-2 lbm, leslie3d, povray, gobmk
H3L1-3 soplex, lbm, sjeng, calculix
H2L2-1 milc, sphinx3, libquantum, streamcluster
H2L2-2 bzip2, zeusmp, omnetpp, namd
H2L2-3 freqmine, swaptions, mcf, leslie3d
H1L3-1 povray, canneal, mcf, leslie3d
H1L3-2 milc, freqmine, GemsFDTD, canneal
L4-1 calculix, GemsFDTD, h264ref, sphinx3
L4-2 Hmmer, omnetpp, streamcluster, swaptions

TABLE 1
Simulation Configuration

CPUmodel Out-of-Order, X86, 2GHz

Cache Configuration
L1 2-way, 32 kB, 2 MSHRs 64B line

L2 8-way per core, 128 kB, 8 MSHRs, 8 writeback
entries, 64B line

L3 16-way (SRAM-only 4MB, STT-RAM-only 16MB),
10-way (Hybrid Cache 10MB: 2-way SRAM, 8-
way STT-RAM), 10MB, 16MSHRs, 16writeback
entries, 64B line

Main
Memory

DDR3_1600_x64, 2 GB, 800 MHz, 64-bit data
width, 2 ranks, 8 banks, Open page policy, FIFO
scheduling
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Considering a current request as well as future per-operation
reusability provides more accurate decision on data alloca-
tion or bypass, avoiding space waste and ensuring allocation
of useful data. Only exception isH2L2-2. In this case, the allo-
cation policy favors bypass in prediction while bypass and
allocation show similar benefits. However, this decision
causes slightly more misses. Nevertheless, the hit count is
decreased bymerely 2 percent compared to the baseline.

In summary, the proposed allocation policy significantly
increases LLC hit counts while decreasing LLC dynamic
power effectively for most workloads.

4.3 Impact of Victim Cache Line Selection Scheme

Per-operation Reusability based Allocation and Migration
(ORAM) adopts a unified LRU replacement policy to
increase cache utility. In this scheme, migration should be
performed when the memory type chosen by allocation pol-
icy is different from the one chosen by the unified LRU algo-
rithm. The proposed victim cache line selection scheme
chooses an alternative victim cache line than one in LRU
position to prevent energy waste caused by unnecessary
migration. The victim cache line is selected by two condi-
tions. First, least recently used cache lines whose sum of the
hit count is less than a predetermined threshold can be
selected. Second, the cache lines whose hit count is less than
that of the LRUposition can be selected. The former is named
as a sum of hit count (SH) and the latter is named as LRU
count (LRU), respectively, and their effects on migration and
performance are separatelymeasured in experiments.

For comparison, we also add two more cases where we
choose a cache line at the LRU position as a victim line (all
migration) or any eligible cache line between LRU and
MRU position (no migration).

We measure cache miss and migration counts to eva-
luate victim cache line selection schemes. Experiments are

conducted under the proposed allocation policy, and
HITThreshold is set to 256 for 4096 HPT entries.

Results in Fig. 8 represent the miss counts and migration
counts normalized to the allmigration case (set to 100percent).
First, the Fig. 8a show that themiss counts increase by 30.4, 2.6,
and 0.8 percent on average for no migration, SH, and LRU,
respectively. And the proposed scheme combined with SH
and LRU (the rightmost bar), only increases by 0.4 percent.
The overall increase inmiss count is caused by the fact that we
select a victim in non-LRU position. In H2L2-1 and H2L2-3,
data allocated to SRAM is replaced too early because the vic-
tim cache line close to theMRU position is chosen. As a result,
themiss counts increases asmuch as 4.5 percent.Nevertheless,
the proposed scheme shows the least increase in miss count
for most workloads, which is comparable to the miss count of
all migration case.

On the other hand, in the Fig. 8b, migration counts are
reduced to 39.6, 26.2 and 22.1 percent for SH, LRU and pro-
posed scheme, respectively on average whereas the baseline
(all migration) is 100 percent and no migration is 0 percent.
As shown in figure, SH and LRU significantly reduce the
migration counts in most workloads whereas the proposed
scheme (SHþLRU) has slightly smaller reduction in the
migration counts as it chooses better miss rate over the
increased migration cost.

In our ORAM using a unified replacement policy, migra-
tion is inevitable. Our victim cache line selection scheme effec-
tively reducesmigrationswhileminimizing themiss count.

4.4 Impact of Target Cache Line Selection Scheme

To analyze the impact of the target cache line selection
scheme, we measure the hit matching accuracy, which indi-
cates the percentage of write and read hits in SRAM and
STT-RAM respectively at the target cache line after migration.

In this experiment, the baseline always selects a target
cache line at the LRU or MRU position according to the desti-
nation of data migration. That is, a cache line at the LRU

Fig. 8. An Impact of victim cache line selection scheme on (a) miss count
and (b) migration count improvement.

Fig. 7. Normalized (a) LLC dynamic power and (b) hit counts without a
victim cache line selection scheme.
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position is selected when it migrates to SRAM, and a cache
line at theMRUposition is selected in the opposite case. For 1-
bit operation (OP) matching, we select a target cache line by
only considering the previous operation of a cache line. That
is, when a target cache line needs to migrate to SRAM, we
select a previously written cache line by searching from the
LRUposition to theMRUposition. The opposite case searches
a previously read cache line by searching from theMRU posi-
tion to the LRU position. When the proposed scheme (2-bit
operation (OP) matching) is used, a target cache line is
selected by the proposed operationmatching scheme.

In Fig. 9, results show hit matching accuracy of 95, 94.3 and
96.2 percent for the baseline, 1-bit OPmatching, and proposed
scheme, on average respectively. Although three methods
show reasonably high accuracy for many cases, they are
reduced significantly in L4-1 except for the proposed 2-bit OP
matching scheme. This workload exhibits the characteristics
of dominant read operations and a small working set size fit-
ting in L3 but not in L2. Therefore, a replaced cache line from
L2 cache is likely to be re-invoked, which is captured by the
proposed 2-bit OPmatching scheme. For this reason, the pro-
posed scheme achieves accuracy improvement by 7.9 percent
compared to the baseline in L4-1.

4.5 LLC Energy Efficiency

Our proposed allocation and migration policy aim to reduce
the energy consumption at both main memory and LLC by
reducing the miss rate while efficiently distributing write
operations within the hybrid cache memory. In this section,
we show the results for energy consumption of the LLC. All
experimental results are normalized to the baseline scheme
which uses the unified LRU replacement policy. We also
compare results with the SRAM-only and STT-RAM-only
LLC, APM, and PTHCM.

Fig. 10 presents the distribution of write operations per
memory type in LLC. Total number of write operations
processed by SRAM-only, STT-RAM-only, APM, PTHCM,
and ORAM are different: 101.4, 96.7, 101.4, 92.7 percent and
81.8 percent respectively compared to the baseline. In case
of the SRAM-only and STT-RAM-only LLC and the base-
line, the difference in write counts is caused by varying
cache misses from different capacity. On the other hand, in
case of hybrid cache, the difference in the allocation and
migration scheme causes the variation in writes. Write oper-
ations to STT-RAM for APM and PTHCM account for 72.2
and 69.4 percent respectively whereas they are only 56 per-
cent in ORAM. In further analysis, we break down the LLC
dynamic energy and total LLC energy in Figs. 11 and 12,

respectively. The dynamic LLC energy is broken into tag,
hit and miss, and migration energy in Fig. 11. The total LLC
energy is broken into dynamic energy and leakage energy
in Fig. 12. The largest portion of LLC energy is due to the
leakage energy, solely accounting for 70 percent. The next
largest portion is the miss energy. As shown in Fig. 11, most
workloads consume large energy at the time of data alloca-
tion, which depends on the miss count and write energy
consumption. For this reason, the miss energy of the SRAM-
only accounts for 23.9 percent while the STT-RAM-only
accounts for 91.3 percent despite its large capacity, com-
pared to the baseline. In case of APM and PTHCM, they
represent 60 and 61.9 percent of the dynamic energy con-
sumed by the baseline. On the other hand, ORAM effec-
tively bypasses unnecessary LLC accesses, reducing the
energy required for cache misses to 24.2 percent on average.
The reduction in the miss count and miss energy comes
from not allocating useless data while preserving the useful
data. For this reason, hit energy accounts for 30 percent at
ORAM, while it only represents 25.6 and 22.2 percent for
APM and PTHCM, respectively. On the other hand, migra-
tion overhead in ORAM is a significant part of dynamic
energy, representing 15 percent, while they represent less
than 3.7 percent in other schemes. Although the proposed
per-operation reusability increases migration, decreased
miss energy at the cost of migration proves much larger
benefit. In terms of hit energy, SRAM-only shows the lowest
hit energy for 15.6 percent due to the low-write energy
while in case of STT-RAM-only, it accounts for up to
50.5 percent due to high-write energy, on average.

In summary, LLCdynamic energy is smaller by 54 percent
in SRAM-only and is larger by 51 percent in STT-RAM-only.
It is improved by 24.2 percent for proposed ORAM while
only 5.7 and 7.9 percent for APM and PTHCM respecti-
vely, compared to the baseline. Finally, total LLC energy
including both dynamic and leakage is reduced by 6.2, 20.8,
5.7, 3.3 and 12.3 percent on average for SRAM-only, STT-
RAM-only, APM, PTHCM and ORAM, as shown in the
Fig. 12.

4.6 Main Memory Energy Efficiency

In this section, we present the energy consumption of main
memory, shown in Fig. 13. The main memory access is
closely related to the LLC hit count. Under the same cache
management scheme, SRAM-only and STT-RAM-only show
the opposite tendency. The SRAM-only consumes 15.6 per-
cent larger energy while the STT-RAM-only consumes 11.1
percent less energy on average, due to the difference in
capacity. In SRAM-only, some workloads like H4-1 and
H3L1-3 consume less energy than the baseline, which is the
result of reduced leakage energy consumption of the main
memory due to shorter LLC write latency. In the hybrid
cache, ORAM reduces the energy by 21.2 percent and APM
and PTHCM reduce by 16.4 and 14.3 percent respectively on
average. Energy consumption is reduced for all workloads in
ORAM. This is because it improves the LLC hit count by effi-
ciently bypassing unnecessary data at the data allocation
stage. In addition, the proposed scheme further reduces
main memory accesses as it uses the unified LRU replace-
ment policy to more accurately consider reuse-distance.

Fig. 9. Hit Matching Accuracy for Target Cache Line Selection Scheme.
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4.7 Performance

We evaluate the performance in terms of latency, execution
time and IPC. First, latency is the direct performance indica-
tor to evaluate cache management. In this experiment,
latency includes the LLC hit and miss time, which is directly
affected by the structural and management techniques in
the LLC. As shown in Fig. 14, ORAM shows the largest
latency improvement by 21.2 percent due to reducing both
number of writes in the STT-RAM and accesses to the main
memory, while APM and PTHCM achieve only 11.1 and
8.7 percent improvement respectively, on average. Latency
is increased by 2.9 and 1.9 percent for SRAM-only and STT-
RAM-only, respectively.

In the Fig. 15, execution time shows a similar tendency
to the latency shown in Fig. 14. However, the improvement
in execution time is reduced compared to the latency as it
represents the performance of the entire system. The major
distinction between the results of latency and execution
time is that the execution time of STT-RAM is larger than

SRAM, in H3L1-1, H3L1-2, and H2L2-3. This is because
benchmarks such as mcf, lbm, sjeng, and leslie3d, which
have very large miss counts in the LLC and poor write per-
formance in STT-RAM-only surpasses the gain by its larger
capacity. In summary, SRAM-only reduces execution time
by 3.1 percent and STT-RAM-only increases execution

Fig. 11. Normalized LLC Dynamic Energy Breakdown.

Fig. 12. Normalized Total LLC Energy Breakdown.

Fig. 13. Normalized Main Memory Energy Consumption.

Fig. 10. Normalized Write Count Distribution per Memory Type.
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time by 2 percent compared to the baseline. In the hybrid
cache group, ORAM reduces execution time by 8.8 percent
while APM and PTHCM achieve 5.8 and 3.8 percent reduc-
tion, respectively.

IPC, normalized to the baseline, are shown in Fig. 16. On
average, ORAM improves IPC by 1.5 percent while APM
and PTHCM achieve 1.3 and 1.3 percent improvement
respectively. SRAM-only improves the IPC by 0.2 percent
and STT-RAM-only degrade IPC by 1 percent. Our experi-
ments use a three-level cache hierarchy. As the majority of
requests are processed in the upper-level caches, the impact
of the LLC on the overall system performance would be lim-
ited. Overall, our allocation and migration policy perform
best for all performance metrics.

4.8 Energy-Delay Product (EDP)

The energy-delay product normalized to the baseline is
shown in Fig. 17. In our evaluation, EDP calculation uses
energy and latency for the LLC and main memory. We eval-
uate LLC management scheme. The results show SRAM-
only and STT-RAM-only have 120 and 90.8 percent and

APM, PTHCM, and ORAM have 75.1, 80.5 and 63.1 percent
for EDP, compared to the baseline.

4.9 Storage Overhead

ORAM consists of three modules for an allocation policy, a
victim cache line selection scheme, and a target cache line
selection scheme. The optimal hardware size for each mod-
ule is determined from experiments.

First, the allocation policy module consists of per-core
history queues and tables. Each entry of the history queue
requires 4 bits to store the state information including
bypass, memory type, hit/miss, and operation type. We use
4096 entries for the history queue considering trade-off
between energy saving and hardware overhead. A history
table requires only 10 counters. The size of each counter is
12 bits enough to cover the number of entries of the history
queue. In total, 8 KB is needed for the memory component
of allocation module. And the computation circuitry of the
allocation module needs 4 � 18-bit adders and 4 � 18-bit
multipliers. Therefore, the area cost for these circuits is
about 1 percent compared to the LLC size2.

The module for victim cache line selection consists of a
global hit position queue and table. Since the hit position
queue stores the hit position of the LRU stack, each entry
requires 4 bits for a 10-way associative cache in ORAM and
we need 4096 entries. The hit position table is composed of
counters similar to the history table in allocation module.
The size of each counter is 12 bits to represent the number
of entries in the hit position queue and 10 counters are
needed for 10-way associativity. In total, the storage over-
head of the victim cache line selection module is about 8 KB.

The target cache line selection module requires 1-bit flag
for each cache line to record the latest operation. To store
recent read/write match history, each operation match
queue contains 4096 1-bit entries. The OP hit table consists
of 4 counters, and each counter has 12 bits to cover the size
of the operation match queue. Therefore, the target cache
line selection module requires about 21 KB.

The storage overhead for ORAM is about 37 KB, and it
occupies 0.36 percent of the 10 MB hybrid cache. In conclu-
sion, total hardware overhead including control circuits is
1.36 percent.

Fig. 14. Performance (Latency).

Fig. 15. Performance (Execution Time).

Fig. 16. Performance (IPC).

Fig. 17. Energy Delay Product (EDP).

2. The area of a 16-bit adder and a 16-bit multiplier are 883mm2 and
12,420mm2, respectively [31]. The area of the whole computation logic
is 0.160mm2 even we used 18-bit adders and multipliers, which is mar-
ginal compared to the area of the hybrid cache, 15.652mm2, derived
from CACTI and NVSim (; 1%).
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5 RELATED WORK

Since its introduction, many researchers explored the cases
of utilizing the STT-RAM memory as a cache [1], [2], [3], [4].
Most prior researches have mainly studied techniques to
manage write operations to utilize STT-RAM as a cache
memory. Several works proposed bypass schemes to pre-
vent unnecessary write accesses to STT-RAM caches [5], [6].
The objective of a bypass scheme is to avoid allocation of
dead blocks which are not likely to be reused and forward
them directly to the upper-level cache to reduce unneces-
sary write operations. To identify dead blocks, some
researchers suggested bypass techniques based on write
access pattern analysis. Wang et al. [2] proposed an obstruc-
tion-aware prediction method to decide cache line alloca-
tion or bypass by calculating the cost based on access
pattern analysis. Ahn et al. [3] provided a dead block pre-
diction scheme to bypass the dead blocks identified using
PC based addresses. However, these STT-RAM manage-
ment schemes only reduce unnecessary write accesses due
to dead blocks and cannot resolve the inherent write penalty
of write-intensive cache lines. This is a fundamental prob-
lem of an STT-RAM only LLC.

The SRAM-STT-RAM hybrid cache architecture is pro-
posed to alleviate write penalty by allocating write-intensive
cache lines to SRAM. Prediction table-based hybrid cache
management scheme (PTHCM) [15] allocates cache lines
used by hot trigger instructions to SRAM.Hot trigger instruc-
tions are identified bymaintaining the history ofwrite counts
based on PC. In addition, they prevent data from being allo-
cated only in a certain cache memory to avoid overuse of one
type of memory. However, they do not fully consider per-
operation reusability - gain from hits of an allocated cache
line and loss frommisses of an evicted cache line for different
operation andmemory type.

Other studies proposed data allocation schemes with
dynamic data migration. In general, migration policy redi-
rects or swaps data based on allocated data and the opera-
tion type of a request. Wang et al. [7] proposed adaptive
placement and migration (APM) based on the access pattern
indexed by PC addresses. It decides whether to allocate to a
cache memory or to bypass by identifying write burst and
dead blocks through a pattern simulator. However, this
scheme also neglects per-operation reusability after migra-
tion, leading to the loss of useful data. In addition, excessive
migration may lead to an increase in energy consumption.

Along with allocation and migration schemes, a hybrid
memory specific replacement policy was proposed. Syu
et al. [21] proposed Least Recently Written (LRW) replace-
ment policy to prevent least recently written data from
occupying SRAM for a long time. However, as it has sepa-
rate LRU stack per memory, it performs worse than a glob-
ally optimized unified LRU replacement policy.

In addition, several techniques deploy compiler based
write intensity prediction [17], [18]. However, as the cache
level becomes deeper, these techniques can not reflect the
characteristics of actual workload observed in the LLC.
Finally, other hybrid cache management schemes extended
the techniques for a single processor for multi-processor
applications [22], [30]. However, these techniques do not
address the problems discussed above.

6 CONCLUSION

In this paper, we propose energy efficient per-operation
reusability-based allocation and migration policy (ORAM).
Prior works mostly focused on predicting write intensity for
cache line allocation and migration.

We propose an energy efficient allocation policy by cal-
culating expected total energy based on per-operation reus-
ability. The expected total energy consists of potential
energy consumption of an evicted and allocated cache line
for the current request. We use the unified LRU replacement
policy to increase reusability, which introduces discrepancy
between the memory type determined from the allocation
policy and the memory type which a victim cache line
belong to. To minimize unnecessary migration, we propose
a victim cache line selection scheme to select an alternative
victim cache line. To reduce energy consumption due to
data migration, we propose a target cache line scheme
which considers per-operation reusability.

Experiment results show that ORAM improves LLC
energy consumption by 12.3 percent and main memory
energy consumption by 21.2 percent compared to the hybrid
cache management scheme using unified LRU replacement
policy. The latency and execution time of our management
scheme show improvement by 21.2 and 8.8 percent over the
baseline. In addition, the proposed scheme surpasses the
best existing scheme by 7 and 4.8 percent for the energy
consumption in the LLC and the main memory and by 6.6
and 4.8 percent for the latency and execution time, respec-
tively. As a result, our proposed scheme improves EDP by
36.9 percent over the baseline hybrid cache management
scheme using unified LRU replacement policy.
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